Search results
Results from the WOW.Com Content Network
This fluid dynamics –related article is a stub. You can help Wikipedia by expanding it.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
Lur'e problem block diagram. An early nonlinear feedback system analysis problem was formulated by A. I. Lur'e.Control systems described by the Lur'e problem have a forward path that is linear and time-invariant, and a feedback path that contains a memory-less, possibly time-varying, static nonlinearity.
An RF admittance level sensor uses a rod probe and RF source to measure the change in admittance. The probe is driven through a shielded coaxial cable to eliminate the effects of changing cable capacitance to ground. When the level changes around the probe, a corresponding change in the dielectric is observed.
These traits make precise measurement and compensation of humidity errors more difficult than ionospheric effects. [2] The Atmospheric pressure can also change the signals reception delay, due to the dry gases present at the troposphere (78% N2, 21% O2, 0.9% Ar...). Its effect varies with local temperature and atmospheric pressure in quite a ...
In the 6 MHz DVB-T system, assuming that the oscillator deviation is within ±20 ppm and the carrier frequency is around 800 MHz, the maximum CFO can be up to ±38 subcarrier spacing () in the 8K transmission mode. From the previous discussion, it is clear that the estimated CFO obtained simultaneously in the coarse symbol boundary detection ...
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.
On one side of the meter (A), the teeth of the gears close off the fluid flow because the elongated gear on side A is protruding into the measurement chamber, while on the other side of the meter (B), a cavity holds a fixed volume of fluid in a measurement chamber. As the fluid pushes the gears, it rotates them, allowing the fluid in the ...