Search results
Results from the WOW.Com Content Network
If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...
Two fractions a / b and c / d are equal or equivalent if and only if ad = bc.) For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator ...
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
Since 2 × (−3) = −6, the product (−2) × (−3) must equal 6. These rules lead to another (equivalent) rule—the sign of any product a × b depends on the sign of a as follows: if a is positive, then the sign of a × b is the same as the sign of b, and; if a is negative, then the sign of a × b is the opposite of the sign of b.
6 1 2 1 1 −1 4 5 9. and would be written in modern notation as 6 1 / 4 , 1 1 / 5 , and 2 − 1 / 9 (i.e., 1 8 / 9 ). The horizontal fraction bar is first attested in the work of Al-Hassār (fl. 1200), [35] a Muslim mathematician from Fez, Morocco, who specialized in Islamic inheritance jurisprudence.
[b] Negative quantities were not conceived of in Hellenistic mathematics and Hero merely replaced the negative value by its positive =. [27] The impetus to study complex numbers as a topic in itself first arose in the 16th century when algebraic solutions for the roots of cubic and quartic polynomials were discovered by Italian mathematicians ...
has no real number solution since no real number squared equals −1. Sometimes a quadratic equation has a root of multiplicity 2, such as: (+) = For this equation, −1 is a root of multiplicity 2. This means −1 appears twice, since the equation can be rewritten in factored form as
The first use of an equals sign, equivalent to 14x+15=71 in modern notation.From The Whetstone of Witte (1557) by Robert Recorde. Recorde's introduction of "=" Before the 16th century, there was no common symbol for equality, and equality was usually expressed with a word, such as aequales, aequantur, esgale, faciunt, ghelijck, or gleich, and sometimes by the abbreviated form aeq, or simply æ ...