enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution ) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...

  3. Random close pack - Wikipedia

    en.wikipedia.org/wiki/Random_close_pack

    Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container.

  4. Interstitial site - Wikipedia

    en.wikipedia.org/wiki/Interstitial_site

    A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes. Looking at the three green spheres in the hexagonal packing illustration at the top of the page, they form a triangle-shaped hole. If an atom is arranged on top of this triangular hole it forms a tetrahedral interstitial hole.

  5. Atomic packing factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_packing_factor

    where N particle is the number of particles in the unit cell, V particle is the volume of each particle, and V unit cell is the volume occupied by the unit cell. It can be proven mathematically that for one-component structures, the most dense arrangement of atoms has an APF of about 0.74 (see Kepler conjecture), obtained by the close-packed ...

  6. Hexagonal crystal family - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_crystal_family

    Hexagonal close packed (hcp) unit cell. Hexagonal close packed (hcp) is one of the two simple types of atomic packing with the highest density, the other being the face-centered cubic (fcc). However, unlike the fcc, it is not a Bravais lattice, as there are two nonequivalent sets of lattice points.

  7. Frank–Kasper phases - Wikipedia

    en.wikipedia.org/wiki/Frank–Kasper_phases

    The μ phase has an ideal A 6 B 7 stoichiometry, with its prototype W 6 Fe 7, containing rhombohedral cell with 13 atoms. While many other Frank-Kasper alloy types have been identified, more continue to be found. The alloy Nb 10 Ni 9 Al 3 is the prototype for the M phase. It has orthorhombic space group with 52 atoms per unit

  8. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.

  9. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    20 points and their Voronoi cells (larger version below) In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators).