enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  3. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    However, in the application of graph traversal methods in artificial intelligence the input may be an implicit representation of an infinite graph. In this context, a search method is described as being complete if it is guaranteed to find a goal state if one exists. Breadth-first search is complete, but depth-first search is not.

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    Search trees store data in a way that makes an efficient search algorithm possible via tree traversal. A binary search tree is a type of binary tree; Representing sorted lists of data; Computer-generated imagery: Space partitioning, including binary space partitioning; Digital compositing; Storing Barnes–Hut trees used to simulate galaxies ...

  5. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.

  6. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    Initialize a tree with a single vertex, chosen arbitrarily from the graph. Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree. Repeat step 2 (until all vertices are in the tree).

  7. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;

  8. Left-child right-sibling binary tree - Wikipedia

    en.wikipedia.org/wiki/Left-child_right-sibling...

    Remove the root of a tree and process each of its children, or; Join two trees together by making one tree a child of the other. Operation (1) it is very efficient. In LCRS representation, it organizes the tree to have a right child because it does not have a sibling, so it is easy to remove the root. Operation (2) it is also efficient.

  9. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.