Ad
related to: gas diffusion electrode generator supplier
Search results
Results from the WOW.Com Content Network
At first solid electrodes were used in the Grove cell, Francis Thomas Bacon was the first to use gas diffusion electrodes for the Bacon fuel cell, [3] converting hydrogen and oxygen at high temperature into electricity. Over the years, gas diffusion electrodes have been adapted for various other processes like: Zinc-air battery since 1980
Fuel cell systems from these manufacturers are currently being used to generate AC or DC electricity, heat, water, or any combination of the three. This list is incomplete ; you can help by adding missing items .
A deployment of Bloom Energy Servers outside eBay headquarters. The Bloom Energy Server or Bloom Box is a solid oxide fuel cell (SOFC) power generator made by Bloom Energy, of Sunnyvale, California, that takes a variety of input fuels, including liquid or gaseous hydrocarbons [1] produced from biological sources, to produce electricity at or near the site where it will be used.
PEMFCs are built out of membrane electrode assemblies (MEA) which include the electrodes, electrolyte, catalyst, and gas diffusion layers. An ink of catalyst, carbon, and electrode are sprayed or painted onto the solid electrolyte and carbon paper is hot pressed on either side to protect the inside of the cell and also act as electrodes.
The oxidizing gas (e.g., pure O 2, O 2 in air, CO 2, etc.) percolates through a hydrophobic layer on the gas diffusion electrode, acting as a cathode. After the gas diffuses to the electrically conducting layer acting as an electrocatalyst (e.g., hydrophilic activated carbon), the gas is electrochemically reduced.
This configuration allows for efficient proton conduction and effective gas diffusion, making it suitable for various applications, including fuel cell vehicles and portable power systems. Research has shown that 5-layer MEAs can provide improved performance under different operating conditions, making them a preferred choice in the industry.
The planar fuel cell design geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the outside of the tube.
The two electrodes are separated by a porous matrix saturated with an aqueous alkaline solution, such as potassium hydroxide (KOH). Aqueous alkaline solutions do not reject carbon dioxide (CO 2) so the fuel cell can become "poisoned" through the conversion of KOH to potassium carbonate (K 2 CO 3). [2]
Ad
related to: gas diffusion electrode generator supplier