enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  3. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  4. Johnson's criteria - Wikipedia

    en.wikipedia.org/wiki/Johnson's_criteria

    Recognition, the type object can be discerned, a person versus a car (4 +/− 0.8 line pairs) Identification, a specific object can be discerned, a woman versus a man, the specific car (6.4 +/− 1.5 line pairs) These amounts of resolution give a 50 percent probability of an observer discriminating an object to the specified level.

  5. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    These features share similar properties with neurons in the primary visual cortex that encode basic forms, color, and movement for object detection in primate vision. [13] Key locations are defined as maxima and minima of the result of difference of Gaussians function applied in scale space to a series of smoothed and resampled images. Low ...

  6. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.

  7. Features from accelerated segment test - Wikipedia

    en.wikipedia.org/wiki/Features_from_accelerated...

    Features from accelerated segment test (FAST) is a corner detection method, which could be used to extract feature points and later used to track and map objects in many computer vision tasks. The FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and was published in 2006. [ 1 ]

  8. Pandemonium architecture - Wikipedia

    en.wikipedia.org/wiki/Pandemonium_architecture

    In a feature detection model, the image is first perceived in its basic individual elements before it is recognized as a whole object. For example, when we are presented with the letter A, we would first see a short horizontal line and two slanted long diagonal lines.

  9. Object recognition (cognitive science) - Wikipedia

    en.wikipedia.org/wiki/Object_recognition...

    An extension of Marr and Nishihara's model, the recognition-by-components theory, proposed by Biederman (1987), proposes that the visual information gained from an object is divided into simple geometric components, such as blocks and cylinders, also known as "geons" (geometric ions), and are then matched with the most similar object ...