Search results
Results from the WOW.Com Content Network
Hui-Hsiung Kuo (born October 21, 1941) is a Taiwanese-American mathematician, author, and academic. He is Nicholson Professor Emeritus at Louisiana State University [1] and one of the founders of the field of white noise analysis.
The notation . (and its dual) are inspired from the lambda calculus; the intent is to denote the least (and respectively greatest) fixed point of the expression where the "minimization" (and respectively "maximization") are in the variable , much like in lambda calculus . is a function with formula in bound variable; [6] see the denotational ...
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.
The Beltrami identity, named after Eugenio Beltrami, is a special case of the Euler–Lagrange equation in the calculus of variations. The Euler–Lagrange equation serves to extremize action functionals of the form [] = [, (), ′ ()],
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.