Search results
Results from the WOW.Com Content Network
In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers (constants), variables, operations, and functions. [1] Other symbols include punctuation marks and brackets, used for grouping where there is not a well-defined order of ...
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
Closed-form expression. In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations (+, −, ×, /, and integer powers) and function composition. Commonly, the allowed functions are n th root, exponential function, logarithm, and ...
First stated in. 1929; 95 years ago (1929) In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method. The word FOIL is an acronym for the four terms of the product: F irst ("first" terms of each binomial are multiplied together) O uter ("outside ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
The binomial approximation is useful for approximately calculating powers of sums of 1 and a small number x. It states that. It is valid when and where and may be real or complex numbers. The benefit of this approximation is that is converted from an exponent to a multiplicative factor. This can greatly simplify mathematical expressions (as in ...
Following the method as described above results in (+) + (+) = Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x (x + 1)(x + 2) – namely x = 0, x = −1, and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.