enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...

  3. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  4. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  5. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j serves machine-learning models for inference in production using the free developer edition of SKIL, the Skymind Intelligence Layer. [27] [28] A model server serves the parametric machine-learning models that makes decisions about data. It is used for the inference stage of a machine-learning workflow, after data pipelines and ...

  6. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  7. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    In 2018, Banerjee et al. [9] proposed a deep learning model for estimating short-term life expectancy (>3 months) of the patients by analyzing free-text clinical notes in the electronic medical record, while maintaining the temporal visit sequence. The model was trained on a large dataset (10,293 patients) and validated on a separated dataset ...

  8. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.

  9. Predictive coding - Wikipedia

    en.wikipedia.org/wiki/Predictive_coding

    This makes predictive coding similar to some other models of hierarchical learning, such as Helmholtz machines and Deep belief networks, which however employ different learning algorithms. Thus, the dual use of prediction errors for both inference and learning is one of the defining features of predictive coding. [6]