enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Falling cat problem - Wikipedia

    en.wikipedia.org/wiki/Falling_cat_problem

    A solution of the falling cat problem is a curve in the configuration space that is horizontal with respect to the connection (that is, it is admissible by the physics) with prescribed initial and final configurations. Finding an optimal solution is an example of optimal motion planning. [11] [12]

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Galileo recognized that in projectile motion, the Earth's gravity affects vertical but not horizontal motion. [107] However, Galileo's idea of inertia was not exactly the one that would be codified into Newton's first law. Galileo thought that a body moving a long distance inertially would follow the curve of the Earth.

  4. Watt's linkage - Wikipedia

    en.wikipedia.org/wiki/Watt's_linkage

    Such devices had to combine engineering simplicity with a high degree of accuracy, and the ability to operate at speed for lengthy periods. For many purposes approximate linear motion is an acceptable substitute for exact linear motion. Perhaps the best known example is the Watt four bar linkage, invented by the Scottish engineer James Watt in ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots. The case for an oscillating far-field flow, with the plate held at rest, can easily be constructed from the previous solution for an oscillating plate by using linear superposition of solutions.

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    For example, in calculation of the motion of a torus rolling on a horizontal surface with a pearl sliding inside, the time-varying constraint forces like the angular velocity of the torus, motion of the pearl in relation to the torus made it difficult to determine the motion of the torus with Newton's equations. [7]

  8. Holonomic constraints - Wikipedia

    en.wikipedia.org/wiki/Holonomic_constraints

    For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation

  9. Slider-crank linkage - Wikipedia

    en.wikipedia.org/wiki/Slider-crank_linkage

    Then, using the triangle sine law, it is found that the crank to connecting rod angle is 88.21738° and the connecting rod angle is 18.60647° from vertical (see Piston motion equations#Example). When the crank is driven by the connecting rod, a problem arises when the crank is at top dead centre (0°) or bottom dead centre (180°). At these ...