enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]

  4. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  5. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Alternatively, these scores may be applied as feature weights to guide downstream modeling. Relief feature scoring is based on the identification of feature value differences between nearest neighbor instance pairs. If a feature value difference is observed in a neighboring instance pair with the same class (a 'hit'), the feature score decreases.

  6. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Example of a cubic polynomial regression, which is a type of linear regression. Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data.

  8. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Then the learning-to-rank problem can be approximated by a regression problem — given a single query-document pair, predict its score. Formally speaking, the pointwise approach aims at learning a function f ( x ) {\displaystyle f(x)} predicting the real-value or ordinal score of a document x {\displaystyle x} using the loss function L ( f ; x ...

  9. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    This problem is discussed in detail by Weisberg in the discussion section of the Efron et al. (2004) Annals of Statistics article. [3] Weisberg provides an empirical example based upon re-analysis of data originally used to validate LARS that the variable selection appears to have problems with highly correlated variables.