enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  3. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    Enumerative combinatorics is the most classical area of combinatorics and concentrates on counting the number of certain combinatorial objects. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description.

  4. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    The number of permutations of n with k ascents is (by definition) the Eulerian number ; this is also the number of permutations of n with k descents. Some authors however define the Eulerian number n k {\displaystyle \textstyle \left\langle {n \atop k}\right\rangle } as the number of permutations with k ascending runs, which corresponds to k ...

  5. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.

  6. Enumerative combinatorics - Wikipedia

    en.wikipedia.org/wiki/Enumerative_combinatorics

    Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers , enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n .

  7. Combinatorial proof - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_proof

    An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).

  8. Combinatorial class - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_class

    Two combinatorial classes are said to be isomorphic if they have the same numbers of objects of each size, or equivalently, if their counting sequences are the same. [3] Frequently, once two combinatorial classes are known to be isomorphic, a bijective proof of this equivalence is sought; such a proof may be interpreted as showing that the ...

  9. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...