Search results
Results from the WOW.Com Content Network
Elements of kinematics diagrams include the frame, which is the frame of reference for all the moving components, as well as links (kinematic pairs), and joints. Primary Joints include pins, sliders and other elements that allow pure rotation or pure linear motion. Higher order joints also exist that allow a combination of rotation or linear ...
In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism and, working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion. [8] In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of a mechanical system or mechanism.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.
Non-linear kinematic wave for debris flow can be written as follows with complex non-linear coefficients: + =, where is the debris flow height, is the time, is the downstream channel position, is the pressure gradient and the depth dependent nonlinear variable wave speed, and is a flow height and pressure gradient dependent variable diffusion term.
The kinematics and dynamics of the Jansen mechanism have been exhaustively modeled using circle intersection method and bond graphs (Newton–Euler mechanics). [6] These models can be used to rate the actuator torque and in design of the hardware and controller for such a system.