enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. HMAC-based one-time password - Wikipedia

    en.wikipedia.org/wiki/HMAC-based_one-time_password

    A cryptographic hash method H (default is SHA-1) A secret key K, which is an arbitrary byte string and must remain private; A counter C, which counts the number of iterations; A HOTP value length d (6–10, default is 6, and 6–8 is recommended) Both parties compute the HOTP value derived from the secret key K and the counter C. Then the ...

  3. HKDF - Wikipedia

    en.wikipedia.org/wiki/HKDF

    HKDF-Extract takes "input key material" (IKM) such as a shared secret generated using Diffie-Hellman, and an optional salt, and generates a cryptographic key called the PRK ("pseudorandom key"). This acts as a "randomness extractor", taking a potentially non-uniform value of high min-entropy and generating a value indistinguishable from a ...

  4. SHACAL - Wikipedia

    en.wikipedia.org/wiki/SHACAL

    SHACAL-1 turns the SHA-1 compression function into a block cipher by using the state input as the data block and using the data input as the key input. In other words, SHACAL-1 views the SHA-1 compression function as an 80-round, 160-bit block cipher with a 512-bit key. Keys shorter than 512 bits are supported by padding them with zeros.

  5. SHA-1 - Wikipedia

    en.wikipedia.org/wiki/SHA-1

    Nobody has been able to break SHA-1, but the point is the SHA-1, as far as Git is concerned, isn't even a security feature. It's purely a consistency check. The security parts are elsewhere, so a lot of people assume that since Git uses SHA-1 and SHA-1 is used for cryptographically secure stuff, they think that, Okay, it's a huge security feature.

  6. Secure Hash Algorithms - Wikipedia

    en.wikipedia.org/wiki/Secure_Hash_Algorithms

    SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.

  7. Universally unique identifier - Wikipedia

    en.wikipedia.org/wiki/Universally_unique_identifier

    Version 3 uses MD5 as the hashing algorithm, and version 5 uses SHA-1. [1] The namespace identifier is itself a UUID. The specification provides UUIDs to represent the namespaces for URLs, fully qualified domain names, object identifiers, and X.500 distinguished names; but any desired UUID may be used as a namespace designator.

  8. Cryptographic hash function - Wikipedia

    en.wikipedia.org/wiki/Cryptographic_hash_function

    SEAL is a stream cipher that uses SHA-1 to generate internal tables, which are then used in a keystream generator more or less unrelated to the hash algorithm. SEAL is not guaranteed to be as strong (or weak) as SHA-1. Similarly, the key expansion of the HC-128 and HC-256 stream ciphers makes heavy use of the SHA-256 hash function.

  9. Key derivation function - Wikipedia

    en.wikipedia.org/wiki/Key_derivation_function

    Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...