enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's center line than near its walls. [3] Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers ...

  4. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    In practice, an inviscid flow is an idealization, one that facilitates mathematical treatment. In fact, purely inviscid flows are only known to be realized in the case of superfluidity . Otherwise, fluids are generally viscous , a property that is often most important within a boundary layer near a solid surface, [ 22 ] where the flow must ...

  5. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    Slender-body theory is a methodology used in Stokes flow problems to estimate the force on, or flow field around, a long slender object in a viscous fluid. The shallow-water equations can be used to describe a layer of relatively inviscid fluid with a free surface , in which surface gradients are small.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    Helmholtz's theorems apply to inviscid flows. In observations of vortices in real fluids the strength of the vortices always decays gradually due to the dissipative effect of viscous forces. Alternative expressions of the three theorems are as follows: The strength of a vortex tube does not vary with time. [2]

  9. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...