enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Motor constants - Wikipedia

    en.wikipedia.org/wiki/Motor_constants

    The torque on shaft is 0.0053 N⋅m at 2 A because of the assumed radius of the rotor (exactly 1 m). Assuming a different radius would change the linear K v {\displaystyle K_{\text{v}}} but would not change the final torque result.

  3. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    Note that for the automotive/hotrod use-case the most convenient (used by enthusiasts) unit of length for the piston-rod-crank geometry is the inch, with typical dimensions being 6" (inch) rod length and 2" (inch) crank radius. This article uses units of inch (") for position, velocity and acceleration, as shown in the graphs above.

  4. Prony brake - Wikipedia

    en.wikipedia.org/wiki/Prony_brake

    The torque is then related to the lever length, shaft diameter and measured force. The device is generally used over a range of engine speeds to obtain power and torque curves for the engine, since there is a non-linear relationship between torque and engine speed for most engine types. Power output in SI units may be calculated as follows:

  5. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    Torque has the dimension of force times distance, symbolically T −2 L 2 M and those fundamental dimensions are the same as that for energy or work. Official SI literature indicates newton-metre, is properly denoted N⋅m, as the unit for torque; although this is dimensionally equivalent to the joule, which is not used for torque.

  6. Mean effective pressure - Wikipedia

    en.wikipedia.org/wiki/Mean_effective_pressure

    Speed has dropped out of the equation, and the only variables are the torque and displacement volume. Since the range of maximum brake mean effective pressures for good engine designs is well established, we now have a displacement-independent measure of the torque-producing capacity of an engine design – a specific torque of sorts.

  7. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  8. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    Calculation of the steam turbine shaft radius for a turboset: Assumptions: Power carried by the shaft is 1000 MW; this is typical for a large nuclear power plant. Yield stress of the steel used to make the shaft (τ yield) is: 250 × 10 6 N/m 2. Electricity has a frequency of 50 Hz; this is the typical frequency in Europe.

  9. Shaft (mechanical engineering) - Wikipedia

    en.wikipedia.org/wiki/Shaft_(mechanical_engineering)

    The following stresses are induced in the shafts.. Shear stresses due to the transmission of torque (due to torsional load).; Bending stresses (tensile or compressive) due to the forces acting upon the machine elements like gears and pulleys as well as the self weight of the shaft.