Search results
Results from the WOW.Com Content Network
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Notably, given an infinite tree, [d] the corecursive breadth-first traversal will traverse all nodes, just as for a finite tree, while the recursive depth-first traversal will go down one branch and not traverse all nodes, and indeed if traversing post-order, as in this example (or in-order), it will visit no nodes at all, because it never ...
The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G. The non-recursive implementation is similar to breadth-first search but differs from it in two ways: it uses a stack instead of a queue, and
Standard examples of single recursion include list traversal, such as in a linear search, or computing the factorial function, while standard examples of multiple recursion include tree traversal, such as in a depth-first search.
One useful operation on such a tree is traversal: visiting all the items in order of the key. A simple recursive traversal algorithm that visits each node of a binary search tree is the following. Assume t is a pointer to a node, or nil. "Visiting" t can mean performing any action on the node t or its contents.
In graph theory, a recursive tree (i.e., unordered tree) is a labeled, rooted tree. A size-n recursive tree's vertices are labeled by distinct positive integers 1, 2, …, n, where the labels are strictly increasing starting at the root labeled 1. Recursive trees are non-planar, which means that the children of a particular vertex are not ...
A tree whose root node has two subtrees, both of which are full binary trees. A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full ...
If the first character of the string is less than the character in the root node, a recursive lookup can be called on the tree whose root is the lo kid of the current root. Similarly, if the first character is greater than the current node in the tree, then a recursive call can be made to the tree whose root is the hi kid of the current node. [1]