enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  3. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    Split the remaining 3-node up into a pair of 2-nodes (the now missing middle value is handled in the next step). If this is the root node (which thus has no parent): the middle value becomes the new root 2-node and the tree height increases by 1. Ascend into the root. Otherwise, push the middle value up into the parent node.

  4. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node satisfies the AVL invariant, and its height is one greater than c. The increase in height can increase the height of its ancestors, possibly invalidating the ...

  5. Nested set model - Wikipedia

    en.wikipedia.org/wiki/Nested_set_model

    The nested set model is to number the nodes according to a tree traversal, which visits each node twice, assigning numbers in the order of visiting, and at both visits. This leaves two numbers for each node, which are stored as two attributes. Querying becomes inexpensive: hierarchy membership can be tested by comparing these numbers.

  6. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node may invalidate the balancing invariant. This can be fixed with rotations. The following is the join algorithms on different balancing schemes.

  7. Left-child right-sibling binary tree - Wikipedia

    en.wikipedia.org/wiki/Left-child_right-sibling...

    In a binary tree that represents a multi-way tree T, each node corresponds to a node in T and has two pointers: one to the node's first child, and one to its next sibling in T. The children of a node thus form a singly-linked list. To find a node n 's k 'th child, one needs to traverse this list:

  8. Threaded binary tree - Wikipedia

    en.wikipedia.org/wiki/Threaded_binary_tree

    "A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...

  9. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    The treap was first described by Raimund Seidel and Cecilia R. Aragon in 1989; [1] [2] its name is a portmanteau of tree and heap. It is a Cartesian tree in which each key is given a (randomly chosen) numeric priority. As with any binary search tree, the inorder traversal order of the nodes is the same as the sorted order of the keys. The ...