Search results
Results from the WOW.Com Content Network
Chromosomal reciprocal translocation of the 4th and 20th chromosome. In genetics, chromosome translocation is a phenomenon that results in unusual rearrangement of chromosomes. This includes balanced and unbalanced translocation, with two main types: reciprocal, and Robertsonian translocation.
The growing polypeptide chain is transferred to the tRNA in the A site. Translocation occurs, moving the tRNA to the P/E site, now without an amino acid; the tRNA that was in the A site, now charged with the polypeptide chain, is moved to the P/E site and the uncharged tRNA leaves, and another aminoacyl-tRNA enters the A site to repeat the process.
In bacteria, transformation is a process of gene transfer that ordinarily occurs between individual cells of the same bacterial species. Transformation involves integration of donor DNA into the recipient chromosome by recombination. This process appears to be an adaptation for repairing DNA damages in the recipient chromosome by HRR. [13]
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
The process of bacterial transformation also shares many similarities with chromosomal cross over, particularly in the formation of overhangs on the sides of the broken DNA strand, allowing for the annealing of a new strand. Bacterial transformation itself has been linked to DNA repair many times.
The DNA is recycled for spare parts. If the DNA was originally a plasmid, it will re-circularize inside the new cell and become a plasmid again. If the new DNA matches with a homologous region of the recipient cell's chromosome, it will exchange DNA material similar to the actions in bacterial recombination.
BFB cycles and chromothripsis might be mechanistically related. The chromosome bridge formation could trigger a mutational cascade through the accumulation of chromothripsis in each cell division. This mechanism could explain the evolution and subclonal heterogeneity of some human cancers. [6]
During replication DNA polymerase begins to copy the DNA. At some point during the replication process, the polymerase dissociates from the DNA and replication stalls. When the polymerase reattaches to the DNA strand, it aligns the replicating strand to an incorrect position and incidentally copies the same section more than once.