Search results
Results from the WOW.Com Content Network
After choosing a box at random and withdrawing one coin at random that happens to be a gold coin, the question is what is the probability that the other coin is gold. As in the Monty Hall problem, the intuitive answer is 1 / 2 , but the probability is actually 2 / 3 .
It is called "mixed logit" because the choice probability is a mixture of logits, with as the mixing distribution. [2] It has been shown that a mixed logit model can approximate to any degree of accuracy any true random utility model of discrete choice, given appropriate specification of variables and the coefficient distribution.
In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
The basic idea is to replace each random choice in a random experiment by a deterministic choice, so as to keep the conditional probability of failure, given the choices so far, below 1. The method is particularly relevant in the context of randomized rounding (which uses the probabilistic method to design approximation algorithms).
The GHK algorithm (Geweke, Hajivassiliou and Keane) [1] is an importance sampling method for simulating choice probabilities in the multivariate probit model.These simulated probabilities can be used to recover parameter estimates from the maximized likelihood equation using any one of the usual well known maximization methods (Newton's method, BFGS, etc.).
A gambler has $2, she is allowed to play a game of chance 4 times and her goal is to maximize her probability of ending up with a least $6. If the gambler bets $ on a play of the game, then with probability 0.4 she wins the game, recoup the initial bet, and she increases her capital position by $; with probability 0.6, she loses the bet amount $; all plays are pairwise independent.
The models estimate the probability that a person chooses a particular alternative. The models are often used to forecast how people's choices will change under changes in demographics and/or attributes of the alternatives. Discrete choice models specify the probability that an individual chooses an option among a set of alternatives.