Search results
Results from the WOW.Com Content Network
A quasi-experiment is an empirical interventional study used to estimate the causal impact of an intervention on target population without random assignment.Quasi-experimental research shares similarities with the traditional experimental design or randomized controlled trial, but it specifically lacks the element of random assignment to treatment or control.
In some cases, independent variables cannot be manipulated, for example when testing the difference between two groups who have a different disease, or testing the difference between genders (obviously variables that would be hard or unethical to assign participants to). In these cases, a quasi-experimental design may be used.
Experimental data in science and engineering is data produced by a measurement, test method, experimental design or quasi-experimental design. In clinical research any data produced are the result of a clinical trial. Experimental data may be qualitative or quantitative, each being appropriate for different investigations.
In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.
The prefix quasi-came to denote methods that are "almost" or "socially approximate" an ideal of truly empirical methods. Quasi-empirical method usually refers to a means of choosing problems to focus on (or ignore), selecting prior work on which to build an argument or proof, notations for informal claims, peer review and acceptance, and ...
Impact evaluation designs are identified by the type of methods used to generate the counterfactual and can be broadly classified into three categories – experimental, quasi-experimental and non-experimental designs – that vary in feasibility, cost, involvement during design or after implementation phase of the intervention, and degree of ...
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
The choice of how to group participants depends on the research hypothesis and on how the participants are sampled.In a typical experimental study, there will be at least one "experimental" condition (e.g., "treatment") and one "control" condition ("no treatment"), but the appropriate method of grouping may depend on factors such as the duration of measurement phase and participant ...