enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The Laplace transform is used frequently in engineering and physics; the output of a linear time-invariant system can be calculated by convolving its unit impulse response with the input signal. Performing this calculation in Laplace space turns the convolution into a multiplication; the latter being easier to solve because of its algebraic form.

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    For example, convolution of digit sequences is the kernel operation in multiplication of multi-digit numbers, which can therefore be efficiently implemented with transform techniques (Knuth 1997, §4.3.3.C; von zur Gathen & Gerhard 2003, §8.2).

  4. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform , the Mellin transform , the Z-transform and the ordinary or one-sided Laplace transform .

  5. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  6. Final value theorem - Wikipedia

    en.wikipedia.org/wiki/Final_value_theorem

    For example, for a system described by transfer function = +, the impulse response ... the Laplace transform of the unit step response is = + and so the step response ...

  7. Z-transform - Wikipedia

    en.wikipedia.org/wiki/Z-transform

    In signal processing, this definition can be used to evaluate the Z-transform of the unit impulse response of a discrete-time causal system.. An important example of the unilateral Z-transform is the probability-generating function, where the component [] is the probability that a discrete random variable takes the value.

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    An example of a weakly nonlinear circuit. The inverse multidimensional Laplace transform can be applied to simulate nonlinear circuits. This is done so by formulating a circuit as a state-space and expanding the Inverse Laplace Transform based on Laguerre function expansion.

  9. Volterra integral equation - Wikipedia

    en.wikipedia.org/wiki/Volterra_integral_equation

    Such equations can be analyzed and solved by means of Laplace transform techniques. For a weakly singular kernel of the form K ( t , s ) = ( t 2 − s 2 ) − α {\displaystyle K(t,s)=(t^{2}-s^{2})^{-\alpha }} with 0 < α < 1 {\displaystyle 0<\alpha <1} , Volterra integral equation of the first kind can conveniently be transformed into a ...