enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Face Recognition Vendor Test - Wikipedia

    en.wikipedia.org/wiki/Face_Recognition_Vendor_Test

    FRVT Ongoing now has roughly 200 face recognition algorithms and tests against at least six collections of photographs [5] with multiple photographs of more than 8 million people. The best algorithms for 1:1 verification gives False Non Match Rates of 0.0003 at False Match Rates of 0.0001 on high quality visa images. [6] Additional programs:

  3. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]

  4. Facial recognition system - Wikipedia

    en.wikipedia.org/wiki/Facial_recognition_system

    Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.

  5. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    A low-resolution smoothed version of the image can be used to obtain an approximate match. Applying the algorithm to higher resolution images will refine the match obtained at lower resolution. As smoothing extends the range of convergence, the weighting function improves the accuracy of approximation, speeding up the convergence.

  6. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    F(0) = 1.0; D(0) = 1.0; i = 0 while F(i) > Ftarget increase i n(i) = 0; F(i)= F(i-1) while F(i) > f × F(i-1) increase n(i) use P and N to train a classifier with n(i) features using AdaBoost Evaluate current cascaded classifier on validation set to determine F(i) and D(i) decrease threshold for the ith classifier (i.e. how many weak ...

  7. Face detection - Wikipedia

    en.wikipedia.org/wiki/Face_detection

    Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...

  8. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The hash table is searched to identify all clusters of at least 3 entries in a bin, and the bins are sorted into decreasing order of size. Each of the SIFT keypoints specifies 2D location, scale, and orientation, and each matched keypoint in the database has a record of its parameters relative to the training image in which it was found.

  9. DeepFace - Wikipedia

    en.wikipedia.org/wiki/DeepFace

    The input is an RGB image of the face, scaled to resolution , and the output is a real vector of dimension 4096, being the feature vector of the face image. In the 2014 paper, [ 13 ] an additional fully connected layer is added at the end to classify the face image into one of 4030 possible persons that the network had seen during training time.