Search results
Results from the WOW.Com Content Network
This is due to its bonding, which is unique among the diatomic elements at standard conditions in that it has an N≡N triple bond. Triple bonds have short bond lengths (in this case, 109.76 pm) and high dissociation energies (in this case, 945.41 kJ/mol), and are thus very strong, explaining dinitrogen's low level of chemical reactivity. [28] [45]
In terms of its bonding to transition metals, N 2 is related to CO and acetylene as all three species have triple bonds.A variety of bonding modes have been characterized. Based on whether the N 2 molecules are shared by two more metal centers, the complexes can be classified into mononuclear and bridg
Similar to carbon–carbon bonds, these bonds can form stable double bonds, as in imines; and triple bonds, such as nitriles. Bond lengths range from 147.9 pm for simple amines to 147.5 pm for C-N= compounds such as nitromethane to 135.2 pm for partial double bonds in pyridine to 115.8 pm for triple bonds as in nitriles. [2]
Its bonding is similar to that in nitrogen, but one extra electron is added to a π* antibonding orbital and thus the bond order has been reduced to approximately 2.5; hence dimerisation to O=N–N=O is unfavourable except below the boiling point (where the cis isomer is more stable) because it does not actually increase the total bond order ...
A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond order of three. The most common triple bond is in a nitrogen N 2 molecule; the second most common is that ...
The bond order itself is the number of electron pairs (covalent bonds) between two atoms. [3] For example, in diatomic nitrogen N≡N, the bond order between the two nitrogen atoms is 3 (triple bond). In acetylene H–C≡C–H, the bond order between the two carbon atoms is also 3, and the C–H bond order is 1 (single bond).
The triply bonded oxo, similar to carbon monoxide, is partially positive at the oxygen atom and unreactive toward Brønsted acids at the oxygen atom. When such a complex is reduced, the triple bond can be converted to a double bond at which point the oxygen no longer bears a partial positive charge and is reactive toward acid.
Tetranitrogen and other similar polynitrogen compounds are predicted to be good candidates for use as high-energy-density matter (HEDM), high-energy fuel sources with small weight in comparison with traditional liquid- and fuel-cell-based energy sources. [9] [8] The N≡N triple bond of N