Search results
Results from the WOW.Com Content Network
Blue light is scattered more than other wavelengths by the gases in the atmosphere, surrounding Earth in a visibly blue layer at the stratosphere, above the clouds of the troposphere, when seen from space on board the ISS at an altitude of 335 km (208 mi) (the Moon is visible as a crescent in the far background). [1] The atmosphere of Earth is ...
The composition of the Earth's atmosphere is different from the other planets because the various life processes that have transpired on the planet have introduced free molecular oxygen. [7] Much of Mercury's atmosphere has been blasted away by the solar wind. [8] The only moon that has retained a dense atmosphere is Titan.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The Moon is visible in the background. An atmosphere (from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere') [1] is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of
The atmosphere envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert nitrogen (78%), oxygen (21%) and argon (0.9%). [4] Some trace gases in the atmosphere, such as water vapour and carbon dioxide, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Earth's atmosphere. Lower 4 layers of atmosphere in 3 dimensions as seen diagonally from above. Layers drawn to scale, objects not to scale. Aurorae shown here at bottom of thermosphere can actually form at any altitude of thermosphere.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...