Search results
Results from the WOW.Com Content Network
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
The phenomenological equation which describes Harper–Dorn creep is = where ρ 0 is dislocation density (constant for Harper–Dorn creep), D v is the diffusivity through the volume of the material, G is the shear modulus and b is the Burgers vector, σ s, and n is the stress exponent which varies between 1 and 3.
L. M. Kachanov [5] and Y. N. Rabotnov [6] suggested the following evolution equations for the creep strain ε and a lumped damage state variable ω: ˙ = ˙ ˙ = ˙ where ˙ is the creep strain rate, ˙ is the creep-rate multiplier, is the applied stress, is the creep stress exponent of the material of interest, ˙ is the rate of damage accumulation, ˙ is the damage-rate multiplier, and is ...
The viscosity equation displayed above further presupposes that there is only one type of gas molecules, and that the gas molecules are perfect elastic hard core particles of spherical shape. This assumption of particles being like billiard balls with radius r {\displaystyle r} , implies that the collision cross section of one molecule can be ...
Especially, it is a robust spatial discretization method for simulating multi-phase (solid-fluid-gas) interactions. In the MPM, a continuum body is described by a number of small Lagrangian elements referred to as 'material points'. These material points are surrounded by a background mesh/grid that is used to calculate terms such as the ...
Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads.
The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman. The equation is only valid for creeping flow, i.e. in the slowest limit of laminar ...