enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wilcoxon signed-rank test - Wikipedia

    en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

    The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1] The one-sample version serves a purpose similar to that of the one-sample Student's t-test. [2]

  3. Wald–Wolfowitz runs test - Wikipedia

    en.wikipedia.org/wiki/Wald–Wolfowitz_runs_test

    The Wald–Wolfowitz runs test (or simply runs test), named after statisticians Abraham Wald and Jacob Wolfowitz is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent.

  4. Mann–Whitney U test - Wikipedia

    en.wikipedia.org/wiki/Mann–Whitney_U_test

    The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.

  5. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  6. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.

  7. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.

  8. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    The typical steps involved in performing a frequentist hypothesis test in practice are: Define a hypothesis (claim which is testable using data). Select a relevant statistical test with associated test statistic T. Derive the distribution of the test statistic under the null hypothesis from the assumptions.

  9. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Non-parametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the probability distributions of the variables being assessed. The most frequently used tests include