Search results
Results from the WOW.Com Content Network
In quantum mechanics, an atomic orbital (/ ˈ ɔːr b ɪ t ə l / ⓘ) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around ...
Nuclease S1 (EC 3.1.30.1) is an endonuclease enzyme that splits single-stranded DNA (ssDNA) and RNA into oligo- or mononucleotides. This enzyme catalyses the following chemical reaction Endonucleolytic cleavage to 5'-phosphomononucleotide and 5'-phosphooligonucleotide end-products
Electron atomic and molecular orbitals A Bohr diagram of lithium. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1]
The atomic nucleus is a bound system of protons and neutrons. The spatial extent and shape of the nucleus depend not only on the size and shape of discrete nucleons, but also on the distance between them (the inter-nucleon distance). (Other factors include spin, alignment, orbital motion, and the local nuclear environment (see EMC effect).)
Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of 1.70 fm (1.70 × 10 −15 m [7]) for hydrogen (the diameter of a single proton) to about 11.7 fm for ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This is particularly important for neutrons, which can penetrate farther than gamma rays and which scatter on the xenon nucleus in the same way that WIMPs are expected to (instead of on xenon's atomic electrons). The outer-detector PMT array is located in a larger water tank.
Brodmann areas 3, 1, and 2 make up the primary somatosensory cortex of the human brain (or S1). [2] Because Brodmann sliced the brain somewhat obliquely, he encountered area 1 first; however, from anterior to posterior , the Brodmann designations are 3, 1, and 2, respectively.