Search results
Results from the WOW.Com Content Network
Glutamate is a very major constituent of a wide variety of proteins; consequently it is one of the most abundant amino acids in the human body. [1] Glutamate is formally classified as a non-essential amino acid, because it can be synthesized (in sufficient quantities for health) from α-ketoglutaric acid, which is produced as part of the citric acid cycle by a series of reactions whose ...
Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. [1] Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter ...
Its ion channel opens only when the following two conditions are met: glutamate is bound to the receptor, and the postsynaptic cell is depolarized (which removes the Mg 2+ blocking the channel). This property of the NMDA receptor explains many aspects of long-term potentiation (LTP) and synaptic plasticity .
Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter ( EAAT ) family and vesicular glutamate transporter ( VGLUT ) family.
The ionotropic glutamate receptors bind the neurotransmitter glutamate. They form tetramers, with each subunit consisting of an extracellular amino terminal domain (ATD, which is involved tetramer assembly), an extracellular ligand binding domain (LBD, which binds glutamate), and a transmembrane domain (TMD, which forms the ion channel).
Glutamate is transported with aspartate via antiporter, thus as one aspartate leaves the cell, a glutamate enters. Glutamate in the matrix is converted into an a-ketoglutarate which is transported in an antiporter with malate. In the cytoplasmic side a-ketoglutarate is converted back into glutamate when aspartate is converted back to oxaloacetate.
If the cell body is normally in an inhibited state, the only way to generate an action potential at the axon hillock is to reduce the cell body's inhibition. In this "open the gates" strategy, the excitatory message is like a racehorse ready to run down the track, but first, the inhibitory starting gate must be removed.
Glutamic acid (symbol Glu or E; [4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins.It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use.