enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Python: Python: Only on Linux No Yes No Yes Yes Keras: François Chollet 2015 MIT license: Yes Linux, macOS, Windows: Python: Python, R: Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks ...

  3. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    Libraries for AI include TensorFlow.js, Synaptic and Brain.js. [6] Julia is a language launched in 2012, which intends to combine ease of use and performance. It is mostly used for numerical analysis, computational science, and machine learning. [6] C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML ...

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions. [ 2 ] [ 3 ] [ 4 ] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  6. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    The problem with using action-values is that they may need highly precise estimates of the competing action values that can be hard to obtain when the returns are noisy, though this problem is mitigated to some extent by temporal difference methods. Using the so-called compatible function approximation method compromises generality and efficiency.

  7. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.

  8. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  9. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    On the other hand, the alternative is to do a lot more learning with one non-ensemble model. An ensemble may be more efficient at improving overall accuracy for the same increase in compute, storage, or communication resources by using that increase on two or more methods, than would have been improved by increasing resource use for a single ...