Search results
Results from the WOW.Com Content Network
Leonhard Euler introduced the function in 1763. [7] [8] [9] However, he did not at that time choose any specific symbol to denote it.In a 1784 publication, Euler studied the function further, choosing the Greek letter π to denote it: he wrote πD for "the multitude of numbers less than D, and which have no common divisor with it". [10]
Langlands's proof of the functional equation for Eisenstein series was 337 pages long. 1983 Trichotomy theorem. Gorenstein and Lyons's proof for the case of rank at least 4 was 731 pages long, and Aschbacher's proof of the rank 3 case adds another 159 pages, for a total of 890 pages. 1983 Selberg trace formula. Hejhal's proof of a general form ...
Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
This concept has been applied to both tangible and intangible products. [9] In particular, "knowledge management" presents problems with regard to this principle. [10] Google's possession of a large amount of content has been the cause of some wariness due to this principle. [11]
The three triangular numbers are not necessarily distinct, or nonzero; for example 20 = 10 + 10 + 0. This is a special case of the Fermat polygonal number theorem . The largest triangular number of the form 2 k − 1 is 4095 (see Ramanujan–Nagell equation ).
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.