Search results
Results from the WOW.Com Content Network
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The introduction mentions the triangle problem of determining a triangle from 1 side length and 2 angles, and refers to an ambiguous case. This ambiguous case is later addressed right after the proof -- I understand this may be important for math homework (but it's really not relevant for this article). However, the section on "the ambiguous ...
The law of sines (also known as the "sine rule") for an arbitrary triangle states: [85] = = = =, where is the area of the triangle and R is the radius of the circumscribed circle of the triangle:
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
Al-Jayyānī's work on spherical trigonometry "contains formulae for right-handed triangles, the general law of sines, and the solution of a spherical triangle by means of the polar triangle." This treatise later had a "strong influence on European mathematics", and his "definition of ratios as numbers" and "method of solving a spherical ...
Like the sine, the cosine and tangent are replaced with rational equivalents, called the "cross" and "twist", and Divine Proportions develops various analogues of trigonometric identities involving these quantities, [3] including versions of the Pythagorean theorem, law of sines and law of cosines. [4]
To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5 , the angle β can equal either 30° or 150°.