Search results
Results from the WOW.Com Content Network
Print/export Download as PDF; Printable version; In other projects ... move to sidebar hide. Few-shot learning and one-shot learning may refer to: Few-shot learning ...
A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.
It is named "chinchilla" because it is a further development over a previous model family named Gopher.Both model families were trained in order to investigate the scaling laws of large language models.
Few-shot learning [ edit ] A prompt may include a few examples for a model to learn from, such as asking the model to complete " maison → house, chat → cat, chien →" (the expected response being dog ), [ 33 ] an approach called few-shot learning .
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. As language models , LLMs acquire these abilities by learning statistical relationships from vast amounts of text during a self-supervised and semi-supervised training process.
The Minnesota Vikings announced on Tuesday that they have signed former New York Giants quarterback Daniel Jones to their 53-man roster.. In a corresponding move, they waived third-string ...
One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning -based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples.