Search results
Results from the WOW.Com Content Network
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).
In atomic physics, the Landé g-factor is a multiplicative term appearing in the expression for the energy levels of an atom in a weak magnetic field. The quantum states of electrons in atomic orbitals are normally degenerate in energy, with these degenerate states all sharing the same angular momentum. When the atom is placed in a weak ...
Since a gyromagnetic factor equal to 2 follows from Dirac's equation, it is a frequent misconception to think that a g-factor 2 is a consequence of relativity; it is not. The factor 2 can be obtained from the linearization of both the Schrödinger equation and the relativistic Klein–Gordon equation (which leads to Dirac's).
The g-factor is a dimensionless factor associated to the nuclear magnetic moment. This parameter contains the sign of the nuclear magnetic moment, which is very important in nuclear structure since it provides information about which type of nucleon (proton or neutron) is dominating over the nuclear wave function.
The g-factor for a "Dirac" magnetic moment is predicted to be g = −2 for a negatively charged, spin-1/2 particle. For particles such as the electron, this "classical" result differs from the observed value by around 0.1%; the difference compared to the classical value is the anomalous magnetic moment.
The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...
In nuclear physics the g-factor of a given system includes the effect of the nucleon spins, their orbital angular momenta, and their couplings. Generally, the g -factors are very difficult to calculate for such many-body systems, but they have been measured to high precision for most nuclei.
where the quantity in square brackets is the Landé g-factor g J of the atom (= and ) and is the z-component of the total angular momentum. For a single electron above filled shells s = 1 / 2 {\displaystyle s=1/2} and j = l ± s {\displaystyle j=l\pm s} , the Landé g-factor can be simplified into: