enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The dimension of this vector space is the number of pixels. The eigenvectors of the covariance matrix associated with a large set of normalized pictures of faces are called eigenfaces; this is an example of principal component analysis. They are very useful for expressing any face image as a linear combination of some of them.

  3. Eigenface - Wikipedia

    en.wikipedia.org/wiki/Eigenface

    However the rank of the covariance matrix is limited by the number of training examples: if there are N training examples, there will be at most N − 1 eigenvectors with non-zero eigenvalues. If the number of training examples is smaller than the dimensionality of the images, the principal components can be computed more easily as follows.

  4. Two-dimensional singular-value decomposition - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_singular...

    In linear algebra, two-dimensional singular-value decomposition (2DSVD) computes the low-rank approximation of a set of matrices such as 2D images or weather maps in a manner almost identical to SVD (singular-value decomposition) which computes the low-rank approximation of a single matrix (or a set of 1D vectors).

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  6. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The k-th principal component of a data vector x (i) can therefore be given as a score t k(i) = x (i) ⋅ w (k) in the transformed coordinates, or as the corresponding vector in the space of the original variables, {x (i) ⋅ w (k)} w (k), where w (k) is the kth eigenvector of X T X. The full principal components decomposition of X can therefore ...

  7. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k 1, ..., k n are the n principal curvatures at a point p ∈ M and X 1, ..., X n are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by

  8. Image moment - Wikipedia

    en.wikipedia.org/wiki/Image_moment

    The eigenvectors of this matrix correspond to the major and minor axes of the image intensity, so the orientation can thus be extracted from the angle of the eigenvector associated with the largest eigenvalue towards the axis closest to this eigenvector. It can be shown that this angle Θ is given by the following formula:

  9. Eigenvalues and eigenvectors - en.wikipedia.org

    en.wikipedia.org/.../Eigenvalues_and_eigenvectors

    In linear algebra, it is often important to know which vectors have their directions unchanged by a given linear transformation. An eigenvector (/ ˈ aɪ ɡ ən-/ EYE-gən-) or ch