enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The dimension of this vector space is the number of pixels. The eigenvectors of the covariance matrix associated with a large set of normalized pictures of faces are called eigenfaces; this is an example of principal component analysis. They are very useful for expressing any face image as a linear combination of some of them.

  3. Eigenface - Wikipedia

    en.wikipedia.org/wiki/Eigenface

    However the rank of the covariance matrix is limited by the number of training examples: if there are N training examples, there will be at most N − 1 eigenvectors with non-zero eigenvalues. If the number of training examples is smaller than the dimensionality of the images, the principal components can be computed more easily as follows.

  4. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The k-th principal component of a data vector x (i) can therefore be given as a score t k(i) = x (i) ⋅ w (k) in the transformed coordinates, or as the corresponding vector in the space of the original variables, {x (i) ⋅ w (k)} w (k), where w (k) is the kth eigenvector of X T X. The full principal components decomposition of X can therefore ...

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  7. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k 1, ..., k n are the n principal curvatures at a point p ∈ M and X 1, ..., X n are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by

  8. The world’s busiest flight routes for 2024 revealed - AOL

    www.aol.com/news/world-busiest-flight-routes...

    Dubai featured several times in the list, with Dubai-Riyadh the busiest route in the Middle East. - Asia-Pacific Images Studio/E+/Getty Images. When it comes to domestic routes, the top three ...

  9. Courant minimax principle - Wikipedia

    en.wikipedia.org/wiki/Courant_minimax_principle

    Also (in the maximum theorem) subsequent eigenvalues and eigenvectors are found by induction and orthogonal to each other; therefore, = with , =, <. The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if || x || = 1 is a hypersphere then the matrix A deforms that hypersphere into an ellipsoid .