Search results
Results from the WOW.Com Content Network
The two electrons in the same orbital are closer together on average than two electrons in different orbitals, so that they shield each other from the nucleus more effectively and it is easier to remove one electron, resulting in a lower ionization energy. [2] [14] Furthermore, after every noble gas element, the ionization energy drastically drops.
Arranged this way, elements in the same group (column) have similar chemical and physical properties, reflecting the periodic law. For example, the halogens lie in the second-to-last group ( group 17 ) and share similar properties, such as high reactivity and the tendency to gain one electron to arrive at a noble-gas electronic configuration.
The noble gases have also been referred to as inert gases, but this label is deprecated as many noble gas compounds are now known. [6] Rare gases is another term that was used, [ 7 ] but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere due to decay of radioactive ...
A period 2 element is one of the chemical elements in the second row (or period) of the periodic table of the chemical elements.The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.
Helium is the second least reactive noble gas after neon, and thus the second least reactive of all elements. [95] It is chemically inert and monatomic in all standard conditions. Because of helium's relatively low molar (atomic) mass, its thermal conductivity , specific heat , and sound speed in the gas phase are all greater than any other gas ...
An atom with a closed shell of valence electrons (corresponding to a noble gas configuration) tends to be chemically inert. Atoms with one or two valence electrons more than a closed shell are highly reactive due to the relatively low energy to remove the extra valence electrons to form a positive ion. An atom with one or two electrons fewer ...
But the valency of elements first increases from 1 to 4, and then it decreases to 0 as we reach the noble gases. However, as we move down in a group, the number of valence electrons generally does not change. Hence, in many cases the elements of a particular group have the same valency.
The electron configuration can be visualized as the core electrons, equivalent to the noble gas of the preceding period, and the valence electrons: each element in a period differs only by the last few subshells. Phosphorus, for instance, is in the third period.