Search results
Results from the WOW.Com Content Network
It is a "chemistry aware" computer programming language with over 1,000 specific functions for analyzing and manipulating chemical structures and related molecular objects. SVL is a concise, high-level language whose programs are typically 10 times smaller than their equivalent when compared to C or Fortran .
According to this theory a covalent bond is formed between two atoms by the overlap of half filled valence atomic orbitals of each atom containing one unpaired electron. Valence Bond theory describes chemical bonding better than Lewis Theory, which states that atoms share or transfer electrons so that they achieve the octet rule.
Lewis structure of a water molecule. Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule.
Hydrates are ionic compounds that have absorbed water. They are named as the ionic compound followed by a numerical prefix and -hydrate. The numerical prefixes used are listed below (see IUPAC numerical multiplier): mono-di-tri-tetra-penta-hexa-hepta-octa-nona-deca-For example, CuSO 4 ·5H 2 O is "copper(II) sulfate pentahydrate".
Covalent bonds are generally formed between two nonmetals. There are several types of covalent bonds: in polar covalent bonds, electrons are more likely to be found around one of the two atoms, whereas in nonpolar covalent bonds, electrons are evenly shared. Homonuclear diatomic molecules are purely covalent.
As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons. In addition, molecules can be polar, or have polar groups, and the resulting regions of positive and negative charge can interact to produce electrostatic bonding ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, [1] [2] [3] are used to predict whether a chemical bond will be covalent or ionic, and depend on the charge on the cation and the relative sizes of the cation and anion. They can be summarized in the following table: