enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused). [5] Spherical compression (longitudinal) waves. The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas.

  3. Sound energy - Wikipedia

    en.wikipedia.org/wiki/Sound_energy

    In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.

  4. Luminiferous aether - Wikipedia

    en.wikipedia.org/wiki/Luminiferous_aether

    Luminiferous aether or ether [1] (luminiferous meaning 'light-bearing') was the postulated medium for the propagation of light. [2] It was invoked to explain the ability of the apparently wave-based light to propagate through empty space (a vacuum), something that waves should not be able to do. The assumption of a spatial plenum (space ...

  5. Absorption (acoustics) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(acoustics)

    The energy dissipated within a medium as sound travels through it is analogous to the energy dissipated in electrical resistors or that dissipated in mechanical dampers for mechanical motion transmission systems. All three are equivalent to the resistive part of a system of resistive and reactive elements.

  6. Michelson–Morley experiment - Wikipedia

    en.wikipedia.org/wiki/Michelson–Morley_experiment

    Because light can travel through a vacuum, it was assumed that even a vacuum must be filled with aether. Because the speed of light is so great, and because material bodies pass through the aether without obvious friction or drag, it was assumed to have a highly unusual combination of properties. Designing experiments to investigate these ...

  7. Mechanical wave - Wikipedia

    en.wikipedia.org/wiki/Mechanical_wave

    Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. Like all waves, mechanical waves transport energy. This energy propagates in the same direction as the wave. A wave requires an initial energy input; once this initial energy is added, the wave travels through the medium until all its energy is ...

  8. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  9. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    These effects also occur when a light wave travels through a medium with a varying refractive index, or when a sound wave travels through a medium with varying acoustic impedance – all waves diffract, [3] including gravitational waves, [4] water waves, and other electromagnetic waves such as X-rays and radio waves.