Search results
Results from the WOW.Com Content Network
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
In multivariable calculus, the implicit function theorem [a] is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function .
Differential calculus and integral calculus are connected by the fundamental theorem of calculus. This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines.
D-notation leaves implicit the variable with respect to which differentiation is being done. However, this variable can also be made explicit by putting its name as a subscript: if f is a function of a variable x, this is done by writing [6] for the first derivative, for the second derivative,
Implicit differentiation gives the formula for the slope of the tangent line to this curve to be [3] =. Using either one of the polar representations above, the area of the interior of the loop is found to be 3 a 2 / 2 {\displaystyle 3a^{2}/2} .
Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain, the derivative at that point is a way of encoding the small-scale behavior of the function near that point.
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]