Search results
Results from the WOW.Com Content Network
Graphical interpretation of the parallel operator with =.. The parallel operator ‖ (pronounced "parallel", [1] following the parallel lines notation from geometry; [2] [3] also known as reduced sum, parallel sum or parallel addition) is a binary operation which is used as a shorthand in electrical engineering, [4] [5] [6] [nb 1] but is also used in kinetics, fluid mechanics and financial ...
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on . Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers.
The 35s stores complex numbers as single values, which can then be operated on in the standard ways. The above example of adding 12 + 34i and 56 + 78i then becomes: 1 2 i 3 4 ↵ Enter 5 6 i 7 8 +. On the 35s, the number of functions able to handle complex numbers is limited and somewhat arbitrary.
The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + bε , where a and b are real numbers , and ε is a symbol taken to satisfy ε 2 = 0 {\displaystyle \varepsilon ^{2}=0} with ε ≠ 0 {\displaystyle \varepsilon \neq 0} .