Search results
Results from the WOW.Com Content Network
Examples of boronic esters Boronic ester Diol Structural formula Molar mass CAS number Boiling point (°C) Allylboronic acid pinacol ester: pinacol: 168.04: 72824-04-5: 50–53 (5 mmHg) Phenyl boronic acid trimethylene glycol ester: trimethylene glycol: 161.99: 4406-77-3: 106 (2 mm Hg) Diisopropoxymethylborane: isopropanol: 144.02 86595-27-9: ...
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction.
The boron atom of a boronic ester or acid is sp 2 hybridized possessing a vacant p orbital, enabling these groups to act as Lewis acids. The C–B bond of boronic acids and esters are slightly longer than typical C–C single bonds with a range of 1.55-1.59 Å.
Quinoline is mainly used as in the production of other specialty chemicals. Approximately 4 tonnes were produced annually according to a report published in 2005. [ 8 ] Its principal use is as a precursor to 8-hydroxyquinoline , which is a versatile chelating agent and precursor to pesticides.
MIDA boronate esters and organotrifluoroborates have both been utilised in "slow release" strategies, in which the reaction conditions are optimised to provide a slow release of boronic acid. This protocol has proved useful in the cross-coupling of some notoriously unstable boronic acids, such as the 2-pyridine boronic acid.
The pinacol coupling can be followed up by a pinacol rearrangement. A related reaction is the McMurry reaction , which uses titanium(III) chloride or titanium(IV) chloride in conjunction with a reducing agent for the formation of the metal-diol complex, and which takes place with an additional deoxygenation reaction step in order to provide an ...
The first leg of the reaction sequence starts from the azeotropic dehydration of a boronic acid (1) such as one based on toluene to a boroxine (2). This boroxine reacts with the proline derivative ( 3d ) to form the basic oxazaborolidine CBS catalyst ( 4 ).