Search results
Results from the WOW.Com Content Network
In stereochemistry, an epimer is one of a pair of diastereomers. [1] The two epimers have opposite configuration at only one stereogenic center out of at least two. [2] All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.
Stereoisomerism about double bonds arises because rotation about the double bond is restricted, keeping the substituents fixed relative to each other. [5] If the two substituents on at least one end of a double bond are the same, then there is no stereoisomer and the double bond is not a stereocenter, e.g. propene, CH 3 CH=CH 2 where the two ...
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
In stereochemistry, diastereomers (sometimes called diastereoisomers) are a type of stereoisomer. [1] Diastereomers are defined as non-mirror image, non-identical stereoisomers. Hence, they occur when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and ...
Racemases catalyze the stereochemical inversion around the asymmetric carbon atom in a substrate having only one center of asymmetry. Epimerases catalyze the stereochemical inversion of the configuration about an asymmetric carbon atom in a substrate having more than one center of asymmetry, thus interconverting epimers.
Very often, cis–trans stereoisomers contain double bonds or ring structures. In both cases the rotation of bonds is restricted or prevented. [4] When the substituent groups are oriented in the same direction, the diastereomer is referred to as cis, whereas when the substituents are oriented in opposing directions, the diastereomer is referred to as trans.
Two enantiomers of a generic amino acid at the stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer.
Absolute configuration uses a set of rules to describe the relative positions of each bond around the chiral center atom. The most common labeling method uses the descriptors R or S and is based on the Cahn–Ingold–Prelog priority rules. R and S refer to rectus and sinister, Latin for right and left, respectively.