Search results
Results from the WOW.Com Content Network
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
A generalized Newtonian fluid is an idealized fluid for which the shear stress is a function of shear rate at the particular time, but not dependent upon the history of deformation.
The constitutive relation is expressed as a linear first-order differential equation: = + ˙ This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain.
Other examples include many polymer solutions (which exhibit the Weissenberg effect), molten polymers, many solid suspensions, blood, and most highly viscous fluids. Newtonian fluids are named after Isaac Newton, who first used the differential equation to postulate the relation between the shear strain rate and shear stress for such fluids.
A governing equation may also be a state equation, an equation describing the state of the system, and thus actually be a constitutive equation that has "stepped up the ranks" because the model in question was not meant to include a time-dependent term in the equation.
In one dimension, the constitutive equation of the Herschel-Bulkley model after the yield stress has been reached can be written in the form: [3] [4] ˙ =, < = + ˙, where is the shear stress [Pa], the yield stress [Pa], the consistency index [Pa s], ˙ the shear rate [s], and the flow index [dimensionless].
A traditional snickerdoodle recipe includes unsalted butter, granulated sugar, eggs, all-purpose flour, cream of tartar, baking soda and salt.
This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules.