Search results
Results from the WOW.Com Content Network
This recursive ray tracing of reflective colored spheres on a white surface demonstrates the effects of shallow depth of field, "area" light sources, and diffuse interreflection. (c. 2008) In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.
It's is the one responsible for the transformation of the prepared 3D scene into a 2D image or animation. 3D render engines can be based on different methods, such as ray-tracing, rasterization, path-tracing, also depending on the speed and the outcome expected, it comes in different types – real-time and non real-time, which was described above
Ray-traced model demonstrating specular reflection. Reflection in computer graphics is used to render reflective objects like mirrors and shiny surfaces.. Accurate reflections are commonly computed using ray tracing whereas approximate reflections can usually be computed faster by using simpler methods such as environment mapping.
The ray-tracing performed by the RT cores can be used to produce reflections, refractions and shadows, replacing traditional raster techniques such as cube maps and depth maps. Instead of replacing rasterization entirely, however, the information gathered from ray-tracing can be used to augment the shading with information that is much more ...
Raster graphic image. In computer graphics, rasterisation (British English) or rasterization (American English) is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image (a series of pixels, dots or lines, which, when displayed together, create the image which was represented via shapes).
A type of ray tracing called path tracing is currently the most common technique for photorealistic rendering. Path tracing is also popular for generating high-quality non-photorealistic images, such as frames for 3D animated films. Both rasterization and ray tracing can be sped up ("accelerated") by specially designed microprocessors called GPUs.
Both ray tracing and ray casting, as well as rasterisation, can be applied to voxel data to obtain 2D raster graphics to depict on a monitor.
Path tracing naturally simulates many effects that have to be specifically added to other methods (conventional ray tracing or scanline rendering), such as soft shadows, depth of field, motion blur, caustics, ambient occlusion, and indirect lighting. Implementation of a renderer including these effects is correspondingly simpler.