Search results
Results from the WOW.Com Content Network
For sufficiently large values of λ, (say λ >1000), the normal distribution with mean λ and variance λ (standard deviation ) is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate continuity correction is performed, i.e., if P( X ≤ x ...
A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if X has a Poisson distribution with expected value λ then the variance of X is also λ, and = (< +) (+ /)
approaches the normal distribution with expected value 0 and variance 1. This result is sometimes loosely stated by saying that the distribution of X is asymptotically normal with expected value 0 and variance 1. This result is a specific case of the central limit theorem.
If X 1 is a normal (μ 1, σ 2 1) random variable and X 2 is a normal (μ 2, σ 2 2) random variable, then X 1 + X 2 is a normal (μ 1 + μ 2, σ 2 1 + σ 2 2) random variable. The sum of N chi-squared (1) random variables has a chi-squared distribution with N degrees of freedom. Other distributions are not closed under convolution, but their ...
For computing the PMF, a DFT algorithm or a recursive algorithm can be specified to compute the exact PMF, and approximation methods using the normal and Poisson distribution can also be specified. poibin - Python implementation - can compute the PMF and CDF, uses the DFT method described in the paper for doing so.
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution , and that the rate parameter itself is considered as a random variable.