enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts for organizing and representing data. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector space.

  3. Tensor product of graphs - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_graphs

    The adjacency matrix of G × H is the Kronecker (tensor) product of the adjacency matrices of G and H. If a graph can be represented as a tensor product, then there may be multiple different representations (tensor products do not satisfy unique factorization) but each representation has the same number of irreducible factors.

  4. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

  6. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, in a fixed basis, a standard linear map that maps a vector to a vector, is represented by a matrix (a 2-dimensional array), and therefore is a 2nd-order tensor. A simple vector can be represented as a 1-dimensional array, and is therefore a 1st-order tensor. Scalars are simple numbers and are thus 0th-order tensors.

  7. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The tensor decomposition is a family of knowledge graph embedding models that use a multi-dimensional matrix to represent a knowledge graph, [1] [5] [17] that is partially knowable due to the gaps of the knowledge graph describing a particular domain thoroughly. [5]

  8. Trace diagram - Wikipedia

    en.wikipedia.org/wiki/Trace_diagram

    Every framed trace diagram corresponds to a multilinear function between tensor powers of the vector space V. The degree-1 vertices correspond to the inputs and outputs of the function, while the degree-n vertices correspond to the generalized Levi-Civita symbol (which is an anti-symmetric tensor related to the determinant). If a diagram has no ...

  9. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.