Search results
Results from the WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
The number of electron pairs in the valence shell of a central atom is determined after drawing the Lewis structure of the molecule, and expanding it to show all bonding groups and lone pairs of electrons. [1]: 410–417 In VSEPR theory, a double bond or triple bond is treated as a single bonding group. [1]
A valence bond structure resembles a Lewis structure, but when a molecule cannot be fully represented by a single Lewis structure, multiple valence bond structures are used. Each of these VB structures represents a specific Lewis structure. This combination of valence bond structures is the main point of resonance theory.
Delocalization energy is defined as the difference in energy between that of the most stable localized Lewis structure and the energy of the molecule computed from Hückel theory orbital energies and occupancies. Since all energies are relative, we set = without loss of generality to simplify discussion. The energy of the localized structure is ...
Lewis Structure of H 2 O indicating bond angle and bond length. Water (H 2 O) is a simple triatomic bent molecule with C 2v molecular symmetry and bond angle of 104.5° between the central oxygen atom and the hydrogen atoms.
This, according to Lewis, meant that bonding occurred when two electrons formed a shared edge between two complete cubes. On these views, in his famous 1916 article The Atom and the Molecule, Lewis introduced the "Lewis structure" to represent atoms and molecules, where dots represent electrons and lines represent covalent bonds.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The structure of pi bonds does not allow for rotation (at least not at 298 K), so the double bond and the triple bond which contain pi bonds are held due to this property. The sigma bond is not so restrictive, and the single bond is able to rotate using the sigma bond as the axis of rotation (Moore, Stanitski, and Jurs 396-397).