Search results
Results from the WOW.Com Content Network
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
Nevertheless, it can be shown that this theorem holds even if or is not differentiable: [3] [4] it suffices, for example, to use the Stieltjes integral in the previous argument. On the other hand, even though general monotonic functions are differentiable almost everywhere, the proof of the general formula does not follow, unless f − 1 ...
That is, the derivative of the area function A(x) exists and is equal to the original function f(x), so the area function is an antiderivative of the original function. Thus, the derivative of the integral of a function (the area) is the original function, so that derivative and integral are inverse operations which reverse each other. This is ...
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function and the plane that contains its domain. [39]
The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...
This notation means “the integral of f(x) from a to b,” and it represents the exact area under the curve f(x) and above the x-axis, between x = a and x = b. The idea behind the Riemann integral is to break the area into small, simple shapes (like rectangles), add up their areas, and then make the rectangles smaller and smaller to get a ...
Integration by substitution can be derived from the fundamental theorem of calculus as follows. Let and be two functions satisfying the above hypothesis that is continuous on and ′ is integrable on the closed interval [,].