Search results
Results from the WOW.Com Content Network
In mathematics, generalized functions are objects extending the notion of functions on real or complex numbers. There is more than one recognized theory, for example the theory of distributions . Generalized functions are especially useful for treating discontinuous functions more like smooth functions , and describing discrete physical ...
In functional analysis, a branch of mathematics, a selection theorem is a theorem that guarantees the existence of a single-valued selection function from a given set-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics. [1]
In mathematics, the Kuratowski–Ryll-Nardzewski measurable selection theorem is a result from measure theory that gives a sufficient condition for a set-valued function to have a measurable selection function. [1] [2] [3] It is named after the Polish mathematicians Kazimierz Kuratowski and Czesław Ryll-Nardzewski. [4]
Resource Selection Functions require two types of data: location information for the wildlife in question, and data on the resources available across the study area. Resources can include a broad range of environmental and geographical variables, including categorical variables such as land cover type, or continuous variables such as average ...
In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...
Pages in category "Generalized functions" The following 39 pages are in this category, out of 39 total. This list may not reflect recent changes. ...
Given two sets and , let be a multivalued map from to (equivalently, : is a function from to the power set of ).. A function : is said to be a selection of , if: (() ()).The existence of more regular choice functions, namely continuous or measurable selections is important in the theory of differential inclusions, optimal control, and mathematical economics. [2]
The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.